martes, 16 de octubre de 2012




INTRODUCCIÓN




El concepto de ecosistema es especialmente interesante para comprender el funcionamiento de la naturaleza y multitud de cuestiones ambientales que se tratarán con detalle en próximos capítulos. 

Hay que insistir en que la vida humana se desarrolla en estrecha relación con la naturaleza y que su funcionamiento nos afecta totalmente. Es un error considerar que nuestros avances tecnológicos: coches, grandes casas, industria, etc. nos permiten vivir al margen del resto de la biosfera y el estudio de los ecosistemas, de su estructura y de su funcionamiento, nos demuestra la profundidad de estas relaciones. 

ECOSISTEMA



El ecosistema es el conjunto de especies de un área determinada que interactúan entre ella y con su ambiente abiótico; mediante procesos como la depredación, el parasitismo, la competencia y la simbiosis, y con su ambiente al desintegrarse y volver a ser parte del ciclo de energía y de nutrientes. Las especies del ecosistema, incluyendo bacterias, hongos, plantas y animales dependen de otras. Las relaciones entre las especies y su medio, resultan en el flujo de materia y energía del ecosistema.
    ·       Funcionamiento del ecosistema
El funcionamiento de todos los ecosistemas es parecido. Todos necesitan una fuente de energía que, fluyendo a través de los distintos componentes del ecosistema, mantiene la vida y moviliza el agua, los minerales y otros componentes físicos del ecosistema. La fuente primera y principal de energía es el sol.
En todos los ecosistemas existe, además, un movimiento continúo de los materiales. Los diferentes elementos químicos pasan del suelo, el agua o el aire a los organismos y de unos seres vivos a otros, hasta que vuelven, cerrándose el ciclo, al suelo o al agua o al aire. 
En el ecosistema la materia se recicla -en un ciclo cerrado- y la energía pasa - fluye- generando organización en el sistema.
·        Estudio del ecosistema
Al estudiar los ecosistemas interesa más el conocimiento de las relaciones entre los elementos, que el cómo son estos elementos. Los seres vivos concretos le interesan al ecólogo por la función que cumplen en el ecosistema, no en sí mismos como le pueden interesar al zoólogo o al botánico. Para el estudio del ecosistema es indiferente, en cierta forma, que el depredador sea un león o un tiburón. La función que cumplen en el flujo de energía y en el ciclo de los materiales son similares y es lo que interesa en ecología. 
Como sistema complejo que es, cualquier variación en un componente del sistema repercutirá en todos los demás componentes. Por eso son tan importantes la s relaciones que se establecen.
Los ecosistemas se estudian analizando las relaciones alimentarias, los ciclos de la materia y los flujos de energía.
 ü  Relaciones alimentarias
La vida necesita un aporte continuo de energía que llega a la Tierra desde el Sol y pasa de unos organismos a otros a través de la cadena trófica.
Las redes de alimentación (reunión de todas las cadenas tróficas) comienzan en las plantas (productores) que captan la energía luminosa con su actividad fotosintética y la convierten en energía química almacenada en moléculas orgánicas. Las plantas son devoradas por otros seres vivos que forman el nivel trófico de los consumidores primarios (herbívoros). 
La cadena alimentaria más corta estaría formada por los dos eslabones citados (ej.: elefantes alimentándose de la vegetación). Pero los herbívoros suelen ser presa, generalmente, de los carnívoros (depredadores) que son consumidores secundarios en el ecosistema. Ejemplos de cadenas alimentarias de tres eslabones serían:

Hierva ß vaca ß hombre 

Algas ß krill ß ballena.

Las cadenas alimentarias suelen tener, como mucho, cuatro o cinco eslabones - seis constituyen ya un caso excepcional-. Ej. de cadena larga sería: 
Algas ß rotíferos ß tardígrados ß nematodos ß musaraña ß autillo

 Pero las cadenas alimentarias no acaban en el depredador cumbre (ej.: autillo), sino que como todo ser vivo muere, existen necrófagos, como algunos hongos o bacterias que se alimentan de los residuos muertos y detritos en general (organismos des componedores o detritívoros). De esta forma se soluciona en la naturaleza el problema de los residuos. 
Los detritos (restos orgánicos de seres vivos) constituyen en muchas ocasiones el inicio de nuevas cadenas tróficas. Por ej., los animales de los fondos abisales se nutren de los detritos que van descendiendo de la superficie.
Las diferentes cadenas alimentarias no están aisladas en el ecosistema sino que forman un entramado entre sí y se suele hablar de red trófica.
Una representación muy útil para estudiar todo este entramado trófico son las pirámides de biomasa, energía o nº de individuos. En ellas se ponen varios pisos con su anchura o su superficie proporcional a la magnitud representada. En el piso bajo se sitúan los productores; por encima los consumidores de primer orden (herbívoros), después los de segundo orden (carnívoros) y así sucesivamente.
ü  Ciclos de la materia
Los elementos químicos que forman los seres vivos (oxígeno, carbono, hidrógeno, nitrógeno, azufre y fósforo, etc.) van pasando de unos niveles tróficos a otros. Las plantas los recogen del suelo o de la atmósfera y los convierten en moléculas orgánicas (glúcidos, lípidos, proteínas y ácidos nucleicos). Los animales los toman de las plantas o de otros animales. Después los van devolviendo a la tierra, la atmósfera o las aguas por la respiración, las heces o la descomposición de los cadáveres, cuando mueren. De esta forma encontramos en todo ecosistema unos ciclos del oxígeno, el carbono, hidrógeno, nitrógeno, etc. cuyo estudio es esencial para conocer su funcionamiento.
ü  Flujo de energía
El ecosistema se mantiene en funcionamiento gracias al flujo de energía que va pasando de un nivel al siguiente. La energía fluye a través de la cadena alimentaria sólo en una dirección: va siempre desde el sol, a través de los productores a los descomponedores. La energía entra en el ecosistema en forma de energía luminosa y sale en forma de energía calorífica que ya no puede reutilizarse para mantener otro ecosistema en funcionamiento. Por esto no es posible un ciclo de la energía similar al de los elementos químicos.

POBLACIÓN


La población es un conjunto de organismos de la misma especie que ocupan un área más o menos definida y que comparten determinado tipo de alimentos.
Aunque cada especie suele tener una o más poblaciones distribuidas cada una en un área predeterminada, no existe ningún impedimento para que dos poblaciones de una misma especie se fusionen ni tampoco para que una población se divida en dos.
·        ·         Crecimiento poblacional
Es el aumento o disminución del número de individuos que constituyen una población.
Las poblaciones tienen una tasa de nacimiento (número de crías producido por unidad de población y tiempo), una tasa de mortalidad (número de muertes por unidad de tiempo) y una tasa de crecimiento.
El principal agente de crecimiento de la población son los nacimientos, y el principal agente de descenso de la población es la muerte.
Cuando el número de nacimientos es superior al número de muertes la población crece y cuando ocurre lo contrario, decrece. Cuando el número de nacimientos es igual al de muertes en una población dada su tamaño no varía, y se dice que su tasa de crecimiento es cero.
Teóricamente, el crecimiento de una población puede ser asombroso.
Sin embargo, en condiciones naturales, existen múltiples factores que limitan su crecimiento y esto causa que las poblaciones se mantengan estables, sobre todo si se consideran largos periodos de tiempo y si se trata de poblaciones cerradas; es decir, aquéllas que carecen de individuos entrantes (inmigrantes) y salientes (emigración).
A medida que crece una población, aumenta la competencia entre los individuos que la integran por la sencilla razón de que los alimentos y nutrientes son limitados.
La tasa de crecimiento (r),  de una población está determinada por cuatro factores: la tasa de natalidad (b); la tasa de mortalidad (d); la tasa de inmigración (i); y la tasa de emigración (e).
Estas cuatro variables se relacionan en la fórmula general
r = (b + i) – (d + e)
·         Densidad de población
Es el número de individuos que constituyen la población en relación con alguna unidad de espacio; por ejemplo, tres leones por kilómetro cuadrado.
Cuando una población no está regulada eficazmente por la serie de factores externos correspondientes, puede transformarse en plaga.
Sin embargo, por lo común existe un equilibrio de las poblaciones naturales, en el cual juegan un papel decisivo los depredadores.
A mayor densidad de población, mayor será la mortalidad ocasionada por los depredadores.
·         Homeostasis de las poblaciones
Uno de los fenómenos más asombrosos del ecosistema es lo que se llama homeostasis de las poblaciones. Originalmente acuñado por fisiólogos, el término homeostasis se refiere a la conservación de innumerables factores que constituyen lo que se conoce como el medio interno de los organismos.
Mantener la temperatura de nuestro cuerpo (37° C) en cualquier clima es un fenómeno de homeostasis. Lo mismo ocurre con la conservación de una cierta cantidad de glucosa en la sangre o de una cierta presión dentro de las células.
En Ecología, la homeostasis se refiere al hecho de que las poblaciones tienden a autorregularse, a permanecer más o menos constantes, pero solo si el ecosistema en que viven está en equilibrio.




COMUNIDAD


Los grupos de poblaciones de un ecosistema interactúan de varias formas. Estas poblaciones interdependientes de plantas y animales forman una comunidad, que abarca la porción biótica (viviente) del ecosistema ubicado en un área determinada.
Tal definición es poco precisa si tomamos en cuenta que en la naturaleza hay poblaciones que aparecen también en áreas vecinas. 
·         Límites y extensión de un ecosistema
Se le llama ecotono a las zonas de transición o límites de un ecosistema. El ecotono no suele ser tan exacto como lo describe una definición. Los biólogos no han perdido de vista la importancia del conocimiento de tan imprecisas entidades y ha sido creada una disciplina que se ocupa de las relaciones entre comunidades: la sinecología.
Existen ecosistemas artificiales cuyos límites son muy precisos; tal es el caso de un acuario o uno de esos botellones en donde se cultivan plantas diversas.
Pero los ecosistemas naturales nunca suelen estar tan bien delimitados. Y no es difícil notar que, en sus límites, las características propias del ecosistema van cambiando gradualmente, estableciéndose así amplias zonas de transición.
Es importante notar que cualquier ecosistema recibe influencias múltiples de otros ecosistemas.
Por ejemplo, hay muchos organismos que pasan las primeras etapas de su existencia en un estanque, para irse luego a vivir entre los arbustos del campo.
La variedad de los ecosistemas del planeta es muy amplia y no sólo por sus dimensiones, sino también por el hecho de que sean crecientes o culminantes, terrestres o acuáticos, abundantes o escasamente diversificados (en cuanto al número de distintas poblaciones que viven en ellos).

ECOLOGÍA


Ecología es la rama de las ciencias biológicas que se ocupa de las interacciones entre los organismos y su ambiente (sustancias químicas y factores físicos). 

Los organismos vivientes se agrupan como factores bióticos del ecosistema; por ejemplo, las bacterias, los hongos, los protozoarios, las plantas, los animales, etc. En pocas palabras, los factores bióticos son todos los seres vivientes en un ecosistema o, más universalmente, en la biosfera.

Por otra parte, los factores químicos y los físicos se agrupan como factores abióticos del ecosistema. Esto incluye a todo el ambiente inerte; por ejemplo, la luz, el agua, el nitrógeno, las sales, el alimento, el calor, el clima, etc. Luego pues, los factores abióticos son los elementos no vivientes en un ecosistema o en la biosfera.

La ecología es una ciencia multidisciplinaria que recurre a la Biología, la Climatología, la Ingeniería Química, la Mecánica, la Ética, etc.
·       ¿Por qué la ecología es una ciencia multidisciplinaria?

La Ecología utiliza a la Física porque todos los procesos bióticos tienen que ver con la transferencia de energía, desde los productores, que aprovechan la energía lumínica para producir compuestos orgánicos complejos, hasta las bacterias, que obtienen energía química mediante la desintegración de las estructuras moleculares de otros organismos.

La Química se usa en Ecología porque todos los procesos metabólicos y fisiológicos de los biosistemas dependen de reacciones químicas. Además, los seres vivientes hacen uso de las substancias químicas que se encuentran en el entorno.

La Ecología se relaciona con la Geología porque la estructura de los biomas depende de la estructura geológica del ambiente. Los seres vivientes también pueden modificar la geología de una región. 

Para la Ecología la Geografía es una disciplina muy importante a causa de la distribución específica de los seres vivientes sobre la Tierra.

Las matemáticas son imprescindibles para la Ecología, por ejemplo para el cálculo, la estadística, las proyecciones y extrapolaciones cuando los Ecólogos tratan con información específica acerca del número y la distribución de las especies, la evaluación de la biomasa, el crecimiento demográfico, la extensión de las comunidades y la biodiversidad, y para cuantificar las presiones del entorno en un bioma dado.

La Climatología y la Meteorología son disciplinas significativas que ayudan a los Ecólogos a entender cómo las variaciones en las condiciones del clima en una región dada influyen en la biodiversidad. La Climatología y la Meteorología ayudan a los Ecólogos para saber cómo los cambios regionales o globales del clima aumentan o reducen las probabilidades de supervivencia de los individuos, las poblaciones y las comunidades en una región dada, y para relacionar el clima regional con la distribución de los organismos sobre el planeta.

La ética promueve los valores contenidos en el ambientalismo científico.

Hay muchas más disciplinas relacionadas con la Ecología. Yo sólo he mencionado las disciplinas que están más íntimamente relacionadas con la Ecología.

MEDIO AMBIENTE


El concepto de medio ambiente se define como el sustento y hogar de todos los seres vivos que habitan el ecosistema global, conocido como la biósfera. El medio ambiente está constituido por elementos abióticos (el medio y sus influencias) y bióticos (organismos vivos). En la primera categoría se encuentra la atmósfera, capa de gas que protege a la Tierra de las radiaciones ultravioletas emitidas por el sol. Circula alrededor del planeta manteniendo estable la temperatura de éste.
El agua también es un componente abiótico del medio ambiente. Ocupa siete de cada diez partes de la Tierra; el 97% se encuentra en los océanos, un 2% está congelado y 1% es agua dulce de ríos, lagos, aguas subterráneas y humedad.
El suelo es un delgado manto que cubre la superficie terrestre, y depende de su geografía la vida de los organismos que habitan en ella, tanto plantas como animales. Durante millones de años, el suelo ha estado sujetado a constantes cambios producto del movimiento tectónico de placas y la evolución del clima. En el cuaternario, específicamente en el pleistoceno, el clima sufrió grandes cambios, osciló entre frió y templado, lo que trajo consigo una adaptación de la flora y fauna del medio.
Con respecto a los elementos bióticos, lo constituyen todos los organismos vivos que habitan el medio ambiente; plantas, animales, y seres humanos. Cada uno de éstos se complementan entre sí, las plantas por un lado realizan fotosíntesis otorgando oxígeno al medio, los animales le proporcionan nutrientes a los humanos y a otros animales, y así se continúa la cadena de un ecosistema específico.
En la actualidad, el medo ambiente ha sufrido muchos cambios principalmente por la acción humana. Sin embargo la mayoría de estos cambios han sido negativos trayendo consigo considerables deterioros para el ambiente.
Históricamente hablando, en primer lugar la aparición del fuego modificó y eliminó la vegetación natural, asimismo erosionó el suelo, perjudicando a una gran cantidad de animales. Con la revolución agrícola también se modificó la flora natural del ambiente, pues se requería de un espacio para llevar a cabo los cultivos. Pero fue la Revolución Industrial la que trajo consigo una gran coyuntura para nuestro hábitat y que hasta el día de hoy sigue ocurriendo. Las emisiones de dióxido carbono que atentan contra la atmósfera, la utilización de hidrocarburos clorados en los pesticidas que son muy resistentes a la degradación biológica, se adhieren a los tejidos de las plantas y contaminan notablemente el agua. Otro aspecto contaminante ha sido la radiación nuclear que contribuye a la generación de la lluvia radiactiva, además existe la posibilidad de que se produzcan accidentes nucleares como el de Chernóbil en Ucrania en 1986.
La contaminación de componentes abióticos del medio ambiente ha sido cada vez más alarmante para los seres humanos. El abastecimiento de agua se ha vuelto muy complejo y aun no se toma conciencia de que sin agua no hay vida.




NICHO ECOLÓGICO


En ecología, nicho ecológico es el término que describe la posición de una especie o población en su ecosistema o entre sí, por ejemplo un delfín podría estar en el nicho ecológico en que están todos o en uno diferente de utilizar recursos de alimentos muy diferentes y otros métodos de búsqueda de alimento.

·         Entendiendo el nicho ecológico

 

Básicamente el nicho ecológico es cómo un organismo se gana la vida. El nicho ecológico describe cómo un organismo o una población responde a la distribución de los recursos y los competidores (por ejemplo, por el crecimiento cuando los recursos son abundantes, y cuando los depredadores, parásitos y patógenos son escasos) y la forma en que a su vez lo alteran los mismos factores (por ejemplo, limitando acceso a los recursos y muchos depredadores).

·         Nicho ecológico desaparecido

Una vez que el nicho ecológico queda vacante, otros organismos pueden ocupar esa posición. Por ejemplo, el lugar que quedó vacante por la extinción de cierta especie es remplazado siempre por otra que no tiene por qué tener exactamente las mismas características.
Además, cuando las 
plantas y los animales se introducen en un nuevo entorno, tienen el potencial para ocupar o invadir el nicho o nichos de organismos nativos, a menudo matando las especies autóctonas; por ello introducir especies exóticas puede desaparecer un nicho ecológico.

FLUJO DE ENERGÍA


La energía es la capacidad de realizar un trabajo y el comportamiento de la misma la describen las leyes de la termodinámica, que son dos:

· La primera ley dice que la energía puede transformarse de una clase en otra, pero no puede destruirse. Por ejemplo, la energía de la luz se transforma en materia orgánica (leña), que a su vez se transforma en calor (fuego) y luz; el calor se puede transformar en energía de ¡movimiento (máquinas a vapor); ésta en luz (dinamo que produce electricidad), y así sucesivamente.

· La segunda ley dice que al pasar de una forma de energía a otra (energía mecánica a química a calor y viceversa) hay pérdida de energía en forma de calor. Cualquier cambio de una forma de energía a otra produce pérdidas por calor. De esto se deduce que un ecosistema no puede ser autoabastecido de energía en el corto plazo y que todos los procesos naturales son irreversibles en cuanto al flujo de energía, es decir, el flujo de energía sigue una sola dirección.
De la energía solar que llega a la superficie de un ecosistema se aprovecha sólo un 1 % aproximadamente, porque las pérdidas son considerables hasta llegar a la producción primaria. En efecto, sólo el 45% de la luz disponible es absorbible por los orgánulos fotosintéticos; una parte de la radiación potencial es reflejada; otra parte es transmitida por los órganos vegetales, 0 sea, que pasa por ellos, y la energía absorbida es transformada en calor.

En el mismo ecosistema hay pérdida de energía, porque cerca de la mitad de la producción primaria bruta es gastada por los productores en su metabolismo y se pierde como calor, y sólo la otra mitad está disponible para los consumidores como alimento (carbohidratos, celulosa, lignina, grasas, proteínas, etc.).

En la cadena trófica, al pasar de un eslabón a otro, hay más pérdida de energía a través de la respiración y los procesos metabólicos de los individuos, porque el mantener vivo un organismo implica gastar, en forma de calor, parte de la energía captada; las sustancias no digeribles, que son excretadas o regurgitadas y descompuestas por los detritívoros; y la muerte de individuos, que ocasiona pérdidas, pero la energía es devuelta, en parte, por los desintegradores.

La fotosíntesis de las plantas verdes es el proceso fundamental mediante el cual la energía solar es transformada en materia orgánica, que mantiene todas las formas de vida sobre la Tierra.

Sin la energía solar no sería posible la vida, y el día en que el Sol cese de producir energía, también se acabará la vida en nuestro planeta indefectiblemente, al menos en forma generalizada. Naturalmente esto sucederá dentro de unos 7000 millones de años.



PRODUCTIVIDAD


Es de interés conocer la producción de materia orgánica de los ecosistemas o de un área determinada para un manejo adecuado y poder regular las cosechas o el aprovechamiento de los recursos naturales disponibles. No se puede cosechar más de lo que se produce o cazar o pescar más de lo que produce un área determinada, de lo contrario se estaría causando problemas en la disponibilidad de los recursos, como la extinción o la merma de las poblaciones. Para determinar la producción se mide la productividad, que es la producción de materia orgánica o biomasa en un área determinada por unidad de tiempo.
 En otras palabras, es la cantidad de materia orgánica acumulada en un determinado tiempo en un área determinada. Se suele distinguir entre productividad primaria, secundarla y biológica.

1. La productividad primaria: Es la cantidad de materia orgánica producida por las plantas verdes, con capacidad de fotosíntesis u organismos autótrofos, a partir de sales minerales, dióxido de carbono y agua, utilizando la energía solar, en un área y tiempo determinados.

Se expresa en términos de energía acumulada (calorías/ml/día o en calorías/ml/hora) o en términos de la materia orgánica sintetizada (gramos/m2/día o kg/hectárea/año), que es el método más fácil y asequible. Por ejemplo, podemos calcular la productividad de una hectárea de alfalfa en un año, con cuatro cortes, pesando la materia obtenida fresca o en seco. Podríamos en determinadas regiones llegara unos 100 000 kg/ha/año en peso húmedo.
En este caso hablamos de productividad neta, donde ya se ha descontado el consumo de energía hecho por las mismas plantas para vivir o respirar. La productividad bruta o total engloba la totalidad de la biomasa acumulada y la energía gastada en el metabolismo de las plantas.

2. La productividad secundaria: Es la materia orgánica producida por los organismos consumidores o heterótrofos, que viven de las sustancias orgánicas ya sintetizadas por las plantas, como es el caso de los herbívoros. Por ejemplo: se puede deducir que una hectárea de pasto ha producido 1 000 kg de vacuno/año en ciertas condiciones, pesando la carne de los animales.

3. La productividad biológica: Es la velocidad de acrecentamiento de la biomasa en un periodo y una superficie determinados, que puede ser por año en una hectárea. Es la producción en pie de un área determinada. Por ejemplo: se puede decir que la productividad de vicuñas de una superficie de 70,000 hectáreas ha sido de 22 000 animales, con un peso de 25 kg por animal, lo que da en total 550,000 kg, o sea, 7,8 kg/ha/año.
La productividad natural puede ser mejorada y superada con técnicas de cultivo Intensivo, pero con frecuencia pueden producirse daños irreparables al ecosistema. La agricultura y la ganadería modernas, con uso de altos insumos en forma de fertilizantes, energía (maquinaria), pesticidas (herbicidas, insecticidas, fungicidas, etc.), y variedades mejoradas han logrado incrementar la productividad natural a niveles muy altos.
Sin embargo, cuando el manejo de las dosis de fertilizantes y pesticidas no es la adecuada, como la aplicación excesiva, los daños a los suelos, a las aguas y a la salud humana pueden ser también importantes. Por ejemplo, la aplicación del DDT ha causado y causa graves consecuencias a la flora, la fauna y la salud de los seres humanos. Lo mismo puede decirse de al menos una docena de otros pesticidas no degradables o difícilmente degradables en los ecosistemas.

CADENA TRÓFICA


La cadena trófica muestra el proceso de transferencia de energía a través de una serie de organismos. En una cadena alimentaria se establecen relaciones entre las especies. 
La cadena trófica muestra el proceso de transferencia de energía alimenticia a través de una serie de organismos, en el que cada uno se alimenta del precedente y es alimento del siguiente. También conocida como cadena alimenticia, es la corriente de energía y nutrientes que se establece entre las distintas especies de un ecosistema en relación con su nutrición.
Los organismos que dieron origen a casi toda la vida que hoy conocemos eran autótrofos, por eso vemos a las redes tróficas comenzando con los productores. Los heterótrofos, en cambio, son los organismos que deben alimentarse de sustancias orgánicas formadas por otros organismos para obtener su energía.


BIÒSFERA


Es la capa del planeta Tierra en donde se desarrolla la vida. La capa incluye alturas utilizadas por algunas aves en sus vuelos, de hasta diez kilómetros sobre el nivel del mar y las profundidades marinas como la fosa de Puerto Rico de más de 8 kilómetros de profundidad. Sin embargo, estos son los extremos, en general, la capa de la Tierra con vida es delgada, ya que las capas superiores de la atmósfera tienen poco oxígeno y la temperatura es muy baja, mientras que las profundidades de los océanos mayores a 1,000 m son oscuras y frías. De hecho, se ha dicho que la biósfera es como la cáscara de una manzana en relación a su tamaño.
El desarrollo del término se atribuye al geólogo inglés Eduard Suess (1831-1914)  y al físico ruso Vladimir I. Vernadsky (1863-1945). La biósfera es una de las cuatro capas que rodean la Tierra junto con la litósfera (rocas), hidrósfera (agua), y atmósfera (aire) y es la suma de todos los ecosistemas.
La biósfera es única. Hasta el momento no se ha encontrado existencia de vida en ninguna otra parte del universo. La vida en el planeta Tierra depende del Sol. La energía proveniente del Sol en forma de luz es capturada por las plantas, algunas bacterias y protistas, mediante el maravilloso fenómeno de la fotosíntesis. La energía capturada transforma al bióxido de carbono en compuestos orgánicos, como los azúcares y se produce oxígeno. La inmensa mayoría de las especies de animales, hongos, plantas parásitas y muchas bacterias dependemos directa o indirectamente de la fotosíntesis.


LEY DEL DIEZMO


O ley del diez por ciento, esta ley también se le conoce como eficiencia ecológica, asume por ejemplo que de la energía que un organismo “X” capta (ya sea por alimento, radiación solar, etc.) un 90% aproximadamente se perderá en las actividades vitales del organismo (moverse, mantener el metabolismo constante, reproducirse, crecer) y que el organismo “Y” que consuma a este individuo “X” únicamente obtendrá el 10% de la energía inicialmente absorbida por “X”, es decir, que si un león devora a una cebra, este león únicamente obtendrá un 10% de la energía que la cebra haya consumido inicialmente, esto es porque la cebra habrá empleado la mayor parte de su energía en su propia supervivencia, esto se aplica de la misma manera en todos los niveles de la pirámide alimenticia, de modo que el organismo tope (un buitre carroñero por ejemplo) obtendrá un 0.001% de la energía total de la pirámide, la misma naturaleza tiene mecanismos para compensar este sistema, es por eso que los depredadores son menos (porque un león necesita consumir 10 cebras para obtener el 100%), en cuanto a acumulación de toxinas u otros compuestos, el sistema funciona al revés, de modo que el buitre tendrá una acumulación de toxinas del 1000% al finalizar el sistema (por eso es que siempre a los depredadores les afectan más los pesticidas) esta peculiaridad se conoce magnificación ecológica.